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Introduction

The research challenges associated with Exascale systems have been articulated in numerous reports. The
challenges of Exascale computing in execution, parallelism, scalability, resilience, and energy efficiency require
a new execution model that enables unprecedented efficiency when used in an Exascale system.

The Codelet Program Execution Model [14, 30] is one of the execution models that have begun to address
these challenges. It is a hybrid model that incorporates the advantages of macro-dataflow [12, 16, 20] and the
Von Neumann model. The Codelet Model can be used to describe programs in massively parallel systems,
including hierarchical or heterogeneous systems.

Proposed Approach

Challenge 1: Parallelism The codelet model relies on explicit data dependence specified between its units
of computations, called codelets. Codelets are collections of instructions that can be scheduled “atomically”
as a unit of computation which run until completion. Synchronization between codelets is ensured through
the signaling of fulfilled events–data or resource availability–on which a specific codelet waits.

Parallelism and more generally asynchronous execution of programs in the codelet model can be achieved
through two separate means: loop parallelism and asynchronous procedure invocation, called threaded pro-
cedures or TPs [24]. Codelets are linked together to form a codelet graph (CDG). Threaded procedures
are containers of CDGs with additional storage space for input, intermediate and output values, as well as
meta-data called the TP frame.

The codelet model assumes the presence of an underlying abstract machine model (AMM). The codelet
AMM is hierarchical and heterogenous. It is divided in “clusters” of cores, each composed of multiple
computation units (CUs) and at least one synchronization unit (SU). The CUs may hold multiple codelet
contexts at once, but can only run one at a time. SUs handle the scheduling and synchronization between
codelets, as well as out-of-cluster communications. They decide whether a given TP must be run, handle
outstanding hardware events and communications, etc.

Challenge 2: OS/Runtime Structure Traditional computer systems tend to use heavy-weight operat-
ing systems (OS), which nowadays also embed runtime systems (e.g. POSIX threads are usually implemented
at the OS level). Runtime systems (RTS) tend to be thin layers put on top of the OS (e.g. MPI or OpenMP).

To reach sufficient scalability in extreme-scale systems, the role of the operating system will need to be
more focused and less all-encompassing. The OS must be restricted to providing APIs to communicate with
external devices, memory management, job scheduling, and I/O management (for at least networking and
file systems). In contrast, the RTS will see its importance grow for efficient program execution: while a given
job is scheduled by the OS on a set of resources, the RTS will manage concurrency on the resources, without
help from the OS (e.g. not like “kernel threads + OpenMP”).

We propose that the RTS and the OS work closely together, but that the RTS handle most of the OS-
provided resources by itself. The RTS must then decide how to schedule threaded procedures, whether to
migrate them from a cluster of cores to another, etc.; it must also decide how to schedule codelets contained
in a TP within a single cluster. By putting the burden of concurrency management at the runtime level
rather than at the OS level, it allows for more fine-grain and user-driven execution: the user and/or the
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compiler can provide “hints” to the runtime on how to schedule specific parts of a given program (e.g. data
affinity, locality-driven or communication-driven, etc.).

Challenge 3: Dynamic Environment Exascale systems are expected to use very aggressive techniques
to save on power and energy consumption, which are expected to imply more faults, transient or otherwise.
Hence, both the OS and the RTS will need to constantly check the state of the underlying hardware for
temperature rises, incorrect behaviors, etc. This self-aware behavior needs to be present both at the OS and
RTS levels.

• At the OS level: any significant environmental change (rise in temperature, hardware failure of some
kind, etc.) will need to be communicated to the relevant instance of the codelet RTS. Most of the time,
it will be the sole job of the OS: to report changes, and let the RTS handle it.

• At the codelet RTS level: it will have almost total control over the hardware resources it is provided.
The SU must then decide how to tune the job currently execututing according to hardware and OS
events—for example, clock- or power-gating CUs, shutting down a cluster, etc.

Approach Assessment

The proposed approach is based on the following dimensions:

• Challenge Addressed Integration of the runtime and the operating system. Scalability is addressed
by the asynchronous execution of the programs with the codelet model.

• Maturity We experimented the relation ans symbiotic relation between OS and RTS on peta-scale
systems through system software design, implementation and final deployment for the many-core chip
based peta-scale Cyclops architecture/system in the past 7 years [6, 5, 9, 29, 11, 10, 28, 3]. The codelet
execution model extends previous successful work performed with the EARTH system [15, 21, 2, 24,
26, 25, 27, 19]. It is the result of 2 years of work under the DARPA UHPC project [4]. This led to
different implementations of the PXM, such as ETI’s SWARM [18], TIDeFlow [22], or DAR3TS from
University of Delaware, have begun to address the exascale challenges.

• Uniqueness A joined OS-runtime work/effort for a flexible ressource management and task scheduling.

• Novelty A correlation/integration of the runtime, and the operating system.

• Applicability Applicable over general purpose parallel systems. Tested on linear algebra and Graph500
benchmarks.

• Effort A 3-year effort to build a software technology that handles the requirements to run efficiently
on extreme-scale systems.

Related Work

The exascale computing challenges create an important need for new execution models. Different fine-grain
models have been developed to address these challenges. Works have already been done to exploit the codelet
model in the ETI’s SWift Adaptive Runtime Machine (SWARM) [18] and TIDeFlow [22].

Fresh Breeze [7, 8] has been developed as a fine-grain PXM for massively parallel computing. It relies
on a globally shared address space where memory where data is not updated but represented as a cycle-free
heap. The FreshBreeze system ensures recycling outdated memory chunks.

ParalleX [13, 17, 23] is an experimental execution model that embodies a set of principles to exploit
runtime knowledge and control to achieve dynamic adaptive resource management, task scheduling, and
exploitation of inherent medium grain parallelism untapped by conventional practices.

The Habanero execution model [1] is an execution model derived from the X10 [5] programming model
where programs are expressed as a collection of asynchronous tasks.
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