
Tackling Unaligned I/O to Support Data-Intensive Exascale Computing

Song Jiang, ECE Department, Wayne State University, Detroit, MI 48082, sjiang@wayne.edu
Kei Davis, CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545,
kei.davis@lanl.gov

In the discussion of choice of storage media for secondary storage in Exascale systems, a consensus seems
to be that the hard disk will still be adopted as the major device to implement scratch, file, and archival
systems [13]. Hard disk provides clear advantages in capacity, storage density, durability, and cost relative
to extant alternatives. In comparison, flash and PCM memory cannot sustain a sufficient level of rewrites
required in Exascale systems to take on the replacement role as the major storage device. While the
challenge of very high bandwidth, such as for checkpointing, could be addressed by attaching more disks to
each node, the performance loss from unaligned I/O is still a major issue for data-intensive applications to
run efficiently run on Exascale systems.

Challenges Addressed: When disk seeks are involved in the request service of a hard disk, service time
can be significantly increased. To keep the system’s I/O throughout from being correspondingly reduced,
we need to ensure that requests have a size of a megabyte or larger so that the seek time is amortized.
However, there are two challenges that keep disk drives from receiving large requests. One is unaligned
requests at the application level. In Exascale computing, the degree of concurrency will be very high, and
if individual processes/threads do not issue large requests, the only chance to form large requests is to align
requests from different processes/threads. Techniques such as Collective I/O to synchronize requests from
hundreds of thousands of processes/threads will be infeasible at such a high degree of concurrency. New
techniques in OS and Runtime (OS/R) must be developed to facilitate creating large requests with
flexibility and low cost. The second challenge is unaligned requests at device level. Because file data are
usually striped over a number of disks on one node or on a number of data nodes, a large request formed at
the application level may be split into a number of sub-requests, each served by one disk. Though in a
general setting a large striping unit size can ensure large sub-requests, for requests unaligned with the file
striping pattern, their first and last sub-requests can be much smaller than the unit size and will be served
inefficiently. Such unaligned accesses can readily result from, for example, files with small headers in front
of regular data. Programmers alone cannot solve this problem—indeed, may not even be aware of the
problem—so the OS/R must be designed to address the issue.

Proposed Solutions: To address the challenges we propose three components in the OS/R to ensure that
only large requests reach the hard disks and are served efficiently. The first two components are to form
large requests through effective request scheduling, and the third one attempts to eliminate small requests
issued to the hard disk with the use of flash memory.

In the first component we relax the tight coupling specified by synchronous requests between requested
data and process execution to generate a larger pool of requests for scheduling and thus increase the
probability of being able to align requests from the same or different processes/threads. To this end, we
need to know requests for data to be consumed in the future. This can be achieved either by providing
interfaces to programmers such that they may register future data needs and having the runtime pre-issue
these future requests, or by using pre-execution to automatically generate future requests. When a program
runs in its I/O phase compute time can be much smaller than I/O time. In this case conventional
prefetching is not effective because future requests cannot be served ahead of synchronous requests. We
propose to temporally block the normal processes/threads to keep them from issuing synchronous requests,
and let the future requests be efficiently served in a well-aligned manner. The processes/threads will then
be released to consume the data when the data are ready in the memory. This data-driven execution is
enabled for programs only when they are detected to be in an I/O phase (roughly, when the I/O-compute
ratio exceeds a given threshold).

The second component targets the I/O scheduler. The I/O scheduler is the primary mechanism in the OS
for sorting and merging requests from processes/threads. These requests are received into the dispatch
queue, which is located in DRAM memory in current OSes. A longer queue allows more requests to be

collected and scheduled, and accordingly more requests to be aligned. Our study indicates that increasing
the queue size from 128 to 8192 (for example) can double or even triple I/O throughput even for sequential
access [10]. But because simply increasing the queue size in memory can run the risk of losing dirty data
for write requests and consume excessive memory space, we propose to place the extended dispatch queue
in flash memory, which is usually of larger size and more energy efficient. As we expect that flash
memory or SSD will be installed on individual nodes in an Exascale system, this proposal is a feasible,
simple, and effective method for improving I/O performance.

The third component is concerned with unaligned access due to data striping. Small sub-requests are
especially detrimental to system’s performance: a request is not completed until each of its sub-requests
has been served, and the low efficiency of serving its small sub-requests can bring down the service
efficiency of an entire request, even if large. We propose to use flash memory to serve small requests, as
this does not require large flash space and the number of rewrites is small compared to the use of flash as
the major storage device or as a burst buffer. To enable the servicing of small read requests on flash we
can track the data access pattern and make the data layout aware of and adaptive to the pattern. Data
transfer between flash and hard disk can be scheduled when the I/O system is not busy.

Advantages of the Solutions: These three components have been individually implemented on LANL’s
Darwin cluster of 120 nodes, among them 116 are 48-core (12-core by 4 socket) 2GHz AMD Opteron 6168,
and are the nodes on which our experiments were performed. The evaluation results for the first two
components have been reported in publications [10, 11]. The performance improvements are very
impressive—for some I/O-intensive applications the throughput improvements can be more than 5X.

Though these proposed solutions have only demonstrated their effectiveness on a smaller-scale system, the
ideas should be readily adaptable to much larger systems. First, they do not require expensive global
synchronization; each decision is made locally. Second, high concurrency can produce many outstanding
requests and easily fill an extended request dispatch queue for exploiting spatial locality. Third, flash
memory is used sparingly and only as a performance booster, exploiting its advantage in serving small
random requests and without imposing excessive writes to it.

There have been many efforts on improving I/O efficiency for disk-based storage systems in a parallel
execution environment, including collective I/O [1,9], data sieving [1], I/O Orchestration [9], data
prefetching [6,7], caching in the system buffer, and the use of flash memory (or SSD) to form hybrid disks
[4,5] or burst buffers [2,3]. However, these schemes are not designed for Exascale systems and will have
respective limitations in larger systems. For example, collective I/O and I/O Orchestration need process
coordination, which may involve hundreds and thousands of processes/threads in the Exascale systems.
Conventional data prefetching does not provide a sufficient number of requests for re-alignment before
synchronous requests are issued. Caching in the system buffer is not effective unless I/O data has strong
temporal locality, which may not be true for application processing “big data.” The same problem exists
for the proposal of using SSD as a burst buffer. If SSD is used with the hard disks to form hybrid disks,
care must be taken to ensure that only performance-critical data are placed on the SSD and the SSD must
be used intelligently to minimize writes to it. Our third component represents a promising effort in this
direction.

Implementation Efforts: The effort expended on prototype implementation on the Darwin cluster was
moderate and mostly involved only isolated system components. The major OS/R components that would
be instrumented or enhanced are (1) the MPICH2 library software to receive programmers’ prefetch hints;
(2) the Linux device mapper for selectively directing requests to either SSD or the hard disk; (3) the PVFS2
functions to identify sub-requests for evaluating the effect of misalignment on I/O performance to decide
the placement of data on SSD or hard disk. We expect that it would be relatively straightforward to port
our existing implementation to a larger-scale system, and feasible to re-implement it for an Exascale system.
The implementation does not require any significant changes to conventional OS/R structure or require
comprehensive modifications of system modules. The existing implementation and its evaluation have
demonstrated substantial performance advantages [10, 11, 12], so the risk for the proposed development is
relatively modest.

References:

[1] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O in ROMIO”, In Proc. of the 7th
Symposium on the Frontiers of Massively Parallel Computation, 1995.
[2] H. Payer, M. A. Sanvido, Z.Z. Bandic, and C. M. Kirsch,“Combo Drive: Optimizing cost and
performance in a heterogeneous storage device”, In the 1st Workshop on integrating solid-state memory
into the storage hierarchy, 2009.
[3] T. Pritchett and M. Thottethodi, “SieveStore: A highlyselective, ensembel-level disk cache for cost-
performance”, In Proceeding of 37th International Symposium on Computer Architecture. ACM, 2010.
[4] F. Chen, D. Koufaty, and X. Zhang, “Hystor: Making the best use of solid state drives in high
performance storage systems”, In International Conference on Supercomputing, 2011.
[5] M. Srinivasan and P. Saab, “Flashcache: a general purpose writeback block cache for Linux, 2011”
https://github.com/facebook/flashcache.
[6] F. Chang and G. A. Gibson, “Automatic I/O hint generation through speculative execution”, In
Proceedings of the third symposium on Operating systems design and implementation (OSDI), 1999.
[7] Y. Chen, S. Byna, X. Sun, R. Thakur, and W. Gropp, “Hiding I/O Latency with Pre-execution
Prefetching for Parallel Applications”, In Proc. of the ACM/IEEE SuperComputingConference, 2008.
[8] X. Zhang and S. Jiang, “ InterferenceRemoval: Removing Interference of Disk Access for MPI
Programs through Data Replication”, In Proc. of the 24th International Conference on Supercomputing,
2010.
[9] X. Zhang, S. Jiang, and, K. Davis, “Making Resonance a Common Case: A High-performance
Implementation of Collective I/O on Parallel File Systems”, In Proc. of the 23rd IEEE International
Parallel and Distributed Processing Symposium, 2009.
[10] X. Zhang, K. Davis, and S. Jiang, “iTransformer: Using SSD to Improve Disk Scheduling for High-
performance I/O” , in Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS'12), Shanghai, China, May, 2012.
[11] X. Zhang, K. Davis, and S. Jiang, “Opportunistic Data-driven Execution of Parallel Programs for
Efficient I/O Services", in Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS'12), Shanghai, China, May, 2012.
[12] X. Zhang, K. Liu, K. Davis, S. Jiang, “iBridge: Improving Unaligned Parallel File Access with
Solid-State Drives”, technical report, May, 2012, Los Alamos National Laboratory.
[13] Peter Kogge, et. Al, “ExaScale Computing Study: Technology Challenges in Achieving Exascale
Systems”, September, 2008

