
Managing Competing Goals with a Self-aware Runtime System
Henry Hoffmann CSAIL, MIT hank@csail.mit.edu

Introduction
The constraints and complexity of extreme-scale computing
systems make them extremely difficult to program. The chal-
lenge stems partly from the need to meet multiple – often
competing – goals, such as maximizing performance while
minimizing energy consumption. Additional difficulty arises
because these systems are dynamic and must continue to
function in the face of both changing application workloads
and unreliable, failure-prone components.

Programming extreme scale systems to meet multiple
constraints and function in the face of unforeseen events is a
challenge beyond most application developers. Meeting this
challenge requires expertise in the application domain and a
deep systems knowledge to balance competing goals. In ad-
dition, adjusting to dynamic fluctuations, such as workload
variance or component failure, requires further knowledge in
the design and implementation of adaptive systems.

The SEEC Model and Runtime System
To address the challenge of programming extreme-scale sys-
tems, we propose a novel self-aware computing model and
runtime system, called SEEC [10]. SEEC allows multiple,
independent components to be combined into self-adaptive,
or autonomic, computing system which adjusts its behav-
ior to meet multiple goals and automatically adapt to envi-
ronmental changes. Like all self-adaptive systems, SEEC is
characterized by the presence of an observe-decide-act, or
ODA, loop [12, 13]. In the SEEC model, a dedicated runtime
system continuously monitors application level goals (ob-
serve) and system-level resources (actions) and determines
how to use resources to meet goals (decide). One of SEEC’s
unique features is that multiple developers contribute to the
construction of the ODA loop, with each concentrating on
their area of expertise.

Observe
In SEEC, applications explicitly state their goals and progress
using the Application Heartbeats API [8]. The API’s key ab-
straction is a heartbeat; applications use a function to emit
heartbeats at important intervals, while additional API calls
specify goals in terms of this heartbeat. SEEC currently sup-
ports three application specified goals: performance, accu-
racy, and power. Performance is specified as a target heart
rate or a target latency between specially tagged heartbeats.
Accuracy goals are specified as a distortion, or linear dis-
tance from an application defined nominal value [11], mea-
sured over some set of heartbeats. Power and energy goals
can be specified as target average power for a given heartrate
or as a target energy between tagged heartbeats. Heartbeat
data can be read by any other process in the system.

Act
In the SEEC model, applications provide goals while system
components specify actions that change the behavior of the
system. SEEC supports a range of actions specified from the
application-level [2, 11], system software level [7, 14], and
the hardware level [9]. SEEC does so by providing an in-
terface that all system components use to specify available
actions. This interface is designed to be general and support
actions exposed by different developers working at different
levels of the system stack. Actions are specified by describ-
ing the actuators that implement them. In SEEC, an actuator
is a data object with: a name, a list of allowable settings, a
function that changes the setting, a set of axes which the ac-
tuator affects (e.g., performance and power), and the effects
of each setting on each axis. These effects are listed as multi-
pliers over a nominal setting, whose effects are 1 on all axes.
Each actuator specifies a delay, which is the time between
when it is set and when its effects can be observed. Finally,
each actuator specifies whether it works on only the appli-
cation that registered it or if it works on all applications, so
that SEEC can distinguish between adaptations specified at
application-level (e.g., changing algorithms) and adaptations
that affect the whole system (e.g., allocating cores).

Decide
SEEC’s runtime system automatically selects actions to meet
goals while reducing cost. The SEEC decision engine is de-
signed to work without prior knowledge of the applications
which it will support. In addition, the runtime system will
need to react quickly to changes in application load and
fluctuations in available resources. To meet these require-
ments for handling unknown applications and volatile envi-
ronments, the SEEC decision engine is designed with multi-
ple layers of adaptation as described in [10]. At the lowest-
level, SEEC acts as a classical control system, taking feed-
back, in the form of heartbeats, and using it to tune actua-
tors to meet goals [15]. The classical control system works
well given prior knowledge about the application’s behav-
ior. Additional layers of adaptation, including adaptive con-
trol and machine learning based techniques [16], allow the
SEEC runtime to allocate resources efficiently without prior
knowledge of the application, or when the behavior of the
actuator diverges from the predicted behavior.

Related Work
Self-aware, or autonomic, computing has been proposed as
one method to deal with the rising complexity of computer
systems [12, 13], and adaptive systems have been imple-
mented in both hardware [1, 4–6] and software [17]. One
limitation of existing approaches is that they typically do not

1 2012/7/13



Figure 1. SPLASH benchmarks under adaptive schemes.

support adaptation as a first-class object. Instead, they adopt
a closed design which is inaccessible to other components of
the system. While this approach completely insulates other
developers from the complexity of adaptive system design,
it leads to additional difficulties. Specifically, closed adap-
tive systems 1) a fixed set of adaptations and 2) that they are
the only adaptive component in the system. These assump-
tions can lead to problems if the set of available adaptations
changes or if multiple adaptive components are deployed on
the same system.

Figure 1 shows experimental results demonstrating how
SEEC overcomes some limitations of uncoordinated, closed
adaptive systems. The figure shows performance per Watt
for 5 of the SPLASH2 [18] benchmarks running on an eight
core Linux x86 system, which supports adapting clock speed
and voltage (through DVFS) and assignment of application
threads to cores. Results are shown for four different adap-
tive schemes. “no adaptation” shows results when the same
speed and core count must be used for all applications. “un-
coordinated adaption” shows the results when independent
systems adapt DVFS and core assignment. “SEEC” shows
the results when SEEC controls both adaptations. Finally,
“oracle” shows the best that can possibly be achieved with
no overhead and perfect knowledge of the future.

The results demonstrate that uncoordinated adaptation is,
on average, only slightly better than not adapting at all. In
fact for 2 of the 5 benchmarks, uncoordinated adaptation is
worse than not adapting. This phenomenon occurs because
uncoordinated adaptation can enter combinations of states
that are suboptimal even though the individual components
are behaving optimally with their local knowledge.

In contrast, SEEC avoids suboptimal configurations be-
cause the ODA loop is open and different adaptive compo-
nents contribute to its construction. This allows adaptations
at different levels to be coordinated. For example, this in-
terface can be used to describe both operating system-level
actions (e.g., allocation of cores to an application [15]) and
hardware-level actions (e.g., reconfiguration of the hardware
data cache [3]). To support this model, adaptive components
must be designed to expose adaptations instead of attempt-
ing to adapt as a closed system.

Assessment of Approach
Challenges Addressed One challenge of exascale comput-
ing is that systems are evaluated on multiple, frequently
competing, metrics. This creates an additional programming
burden to understand not just performance, but also power,
and reliability goals. The SEEC approach addresses this is-
sue by having programs explicitly state high-level goals and
dynamically adjusting the system to meet those goals.
Maturity SEEC has been used to manage power on embed-
ded systems [14] and to create adaptive applications [11]. A
great deal of work has been done to evaluate different deci-
sion mechanisms for the SEEC runtime [16]. To date, SEEC
has been tested on single node systems. It has been tested on
up to 16-core physical systems and up to 256-core simulated
systems. However, there are still several challenges that need
to be addressed to bring the approach to exascale.
Uniqueness One challenge of bringing SEEC to exascale is
that decisions will have to be made across nodes. The Ap-
plication Heartbeats Interface already supports transferring
data to remote nodes. However, there are still open ques-
tions about how to make decisions across multiple nodes.
Some possibilities include adopting a hierarchical decision
mechanism and exploring the use of economic models that
allows distributed decisions to be made without moving the
system into a suboptimal state.
Novelty SEEC is distinguished by its treatment of the ODA
loop as a first class object which is assembled from disparate
parts. Application developers contribute by setting goals and
making it easy to observe key metrics of application success.
Systems developers contribute by describing actuators avail-
able in the system. The SEEC runtime system contributes
by coordinating the efforts of different system components
to reach good global outcomes based on user-defined goals.
The SEEC approach differs from other approaches featuring
closed adaptive components which cannot coordinate with
the rest of the system.
Applicability Many of the challenges of exascale systems
are faced by other systems and many of the solutions should
benefit these areas as well. As mentioned above, SEEC has
applicability to embedded systems and the development of
adaptive applications. A distributed SEEC which works at
scale across nodes could be applicable to high-performance
embedded computing as well as data centers.
Effort One drawback of this approach is that it is not in-
cremental, but requires modification to several parts of the
existing system stack. Applications need to be modified to
emit heartbeats and goals. System components need to be
modified to describe the actuators they support. So far, we
have found these types of modifications fairly unobtrusive
and straightforward. In addition, the SEEC runtime system
needs to be modified to support distributed decision making.
This last issue is likely where the bulk of the effort will be
spent.

2 2012/7/13



References
[1] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho,

S. Dwarkadas, E. G. Friedman, M. C. Huang, V. Kursun,
G. Magklis, M. L. Scott, G. Semeraro, P. Bose, A. Buyuk-
tosunoglu, P. W. Cook, and S. E. Schuster. Dynamically tun-
ing processor resources with adaptive processing. Computer,
36:49–58, December 2003.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: A language
and compiler for algorithmic choice. In PLDI, 2009.

[3] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures.
In Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, MICRO 33, pages 245–257,
New York, NY, USA, 2000. ACM.

[4] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated man-
agement of multiple interacting resources in chip multipro-
cessors: A machine learning approach. In MICRO, 2008.

[5] S. Choi and D. Yeung. Learning-based smt processor resource
distribution via hill-climbing. In ISCA, 2006.

[6] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P. O’Boyle.
A predictive model for dynamic microarchitectural adaptivity
control. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’43,
pages 485–496, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[7] J. Eastep, D. Wingate, M. D. Santambrogio, and A. Agarwal.
Smartlocks: lock acquisition scheduling for self-aware syn-
chronization. In ICAC, 2010.

[8] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller,
and A. Agarwal. Application heartbeats: a generic interface
for specifying program performance and goals in autonomous
computing environments. In ICAC, 2010.

[9] H. Hoffmann, J. Holt, G. Kurian, E. Lau, M. Maggio, J. E.
Miller, S. M. Neuman, M. E. Sinangil, Y. Sinangil, A. Agar-
wal, A. P. Chandrakasan, and S. Devadas. Self-aware comput-
ing in the angstrom processor. In DAC, 2012.

[10] H. Hoffmann, M. Maggio, M. D. S. an d Alberto Leva, and
A. Agarwal. SEEC: A General and Extensible Framework for
Self-Aware Comput ing. Technical Report MIT-CSAIL-TR-
2011-046, MIT, November 2011.

[11] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. In ASPLOS, 2011.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36:41–50, January 2003.

[13] R. Laddaga. Guest editor’s introduction: Creating robust
software through self-adaptation. IEEE Intelligent Systems,
14:26–29, May 1999.

[14] M. Maggio, H. Hoffmann, M. D. S. an d Anant Agarwal,
and A. Leva. Power optimization in embedded systems via
feedback control of resource allocation. IEEE Transactions
on Control Systems Technology (to appear).

[15] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal,
and A. Leva. Controlling software applications via resource

allocation within the heartbeats framework. In CDC, 2010.

[16] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal,
and A. Leva. Decision making in autonomic computing sys-
tems: comparison of approaches and techniques. In Proceed-
ings of the 8th ACM international conference on Autonomic
computing, ICAC ’11, pages 201–204, New York, NY, USA,
2011. ACM.

[17] M. Salehie and L. Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Trans. Auton. Adapt.
Syst., 4(2):1–42, 2009.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. SIGARCH Comput. Archit. News, 23:24–36,
May 1995.

3 2012/7/13


